'%3E%0A%3Cpath d='M55 53.6H817.4' class='g0'/%3E%0A%3C/g%3E%0A%3Cimage clip-path='url(%23c1)' preserveAspectRatio='none' x='277' y='69' width='330' height='175' href='data:image/jpeg%3Bbase64%2C/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIAK8BSgMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5%2BgEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4%2BTl5ufo6ery8/T19vf4%2Bfr/2gAMAwEAAhEDEQA/APsqgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAKOu6tpuh6Tcatq97BZWNsu6aeZwqIM45J9yB9TQAuh6rp%2Bt6XDqel3Ud1ZzgmOVOjYJB/Igj8KALtAFe6vbS1eFLi5hiaaQRRB3ALuQSFGepwCcegNACT3tpBPBBNcwxyXDmOFGcAyMFLFVHcgKTgdgaALCkEZBBoAWgAoASgAoAWgAoAKAEoAWgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDnPiVoUnibwTqOhx2djeNdIq%2BTeSyRxNhwfvx/MrDGVYdGANAHA%2BDdR%2BIng20i8Karpk/imSz%2BzH%2B0I5HLNFNLLvzJIAJPKUIuc7jwWAzQAvw%2B8a%2BPvE%2Bs6cLuw/s2ykvZ1ukm0eeMiDylliG92Xaw3mJjggshI6gUASaj8MdUuPFFzqwt9BngOsx6nFFdr5rswEyuTJ5YYDEiFUO8KUIDKCAADL074QeIEaC5vZ9Ca6ivxcp5UYVYGazeB5YgsShX8xklAxnKLlyRuoA7n4P8Ag678G6HcWd7KjzTPGz%2BXOHjZljVC4URRhSxXJGGJ6licmgDt6ACgDxn9oHw/4z8T%2BLvC2keE7%2B/04S2WoGW9ivLi3htpB5HlSOYuHYfPtRuG%2Bb3oAf4uuPH6aJrFt4gS3GjLNbxJcCJIneI3cSscrM5JMZbgqoOecdKAF8H/ABA17%2B09YvdV%2B1X2i2Jv1nEOlmIWrQ33kwqkjYWXdEHZsE42djwQD0lvEmmreG0Meo%2BaJfKyNPnKbt4T72zbjJHOcYyc4BNAHE/Erx1dW0GhjQLzULBb26Mc8raHPNLtNpLMgWJk3EllQHAO3kHB6AEWveKDq3hLRoJmSDxTa6ho73lqVeNYriS4hEkYfGCMO6naWwDg9aAPUxnHNAC0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHKad4cupPFWq6vqWo6mVN6j2EMWozLCsIhiGGiDBD%2B8EhwQc5rRz91JIlR1uakegWsettq4vdVMzEkxNqExg5GP8AVFtg/LrzU8ztYdtbiad4ftbHU59QivNVkkn3bo59QmliXccnbGzFV9sAYHAocm1YErO4zS/DdppyXKQ32sSi5TY5uNTnmKjnlC7HYeeq4PT0ocmwUbBZeGrO00y50%2BO/1l47n77y6nPJKv8AuSM5ZP8AgJFDm27go2FXw3Zroj6SL7WDC77zKdTnM4OQcCXfvA46Zx1o53e4uXSwlx4as5tHg0tr/WVigfesqanOs7HnhpQ%2B9h8x4JI4HoKOZ3uPl0sGo%2BG7O%2BsbSzlvtZjS1XajwanPFI/AGXdXDOeOrE96FJp3BxuRapp0Y8Q6LeDW7q0aFniFqbhtl4vlP8pQtgsPv7sE/J6UJ6NWE1qhvifxv4U8M6naabr2tW9hdXa74UlDcruCbiQMKNzKMkgZIqSi74p1DS9N0Oe61hBJZHZE6eSZfMMjBFTYAd25mAxjvQBS0%2BLw14o8MS21rDFLpVxJIssMamEFhK2/IGCMuGJ9eTzmgDfjRY41Rc4UYGTk0AZurX%2BkWusaVa6gYhd3Ekn2IvHnDLGSxDY%2BU7SR2znFAFLVYvDej6nZ313YxLc396sMU4gL4ncfKScHbnGAxxyQO9AHRUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBi%2BH7GSz1XX53u0nF5frOiK2TCBbwpsPocoW/4EKqTukJKxtVIwoA8f8Aif458c6V8VtN8LeEtOh1COWyt7qaA2EkpdXujFIWmV1WBVjBYMwOSMY5oA9fXpQBh/EPVLrRPAPiHWbEoLqw0u5uYC65XekTMuR3GQKAOF/Z08d694y0/XIPETxPeabcwKhWFY3MUtukgL%2BW7oTuLgbWzgDcAaAPV6AMLxBBp0uuaBJeXLxXMV5I1lGo4lkNvKGU8dAhc9uQPpVJuzsJ2ujzj47/AAo1zx/4lsNQ0rVLKxgj09rKZpnmDxkzxyiRUjIWTBj%2B5IdpOCRxUjL%2Bt/DabTrW71PSrq81O8kv7S7Nr5cEYdY7uOV1yFXd8qtgMeSB3oAzdA8FeIvAQ1bxBZppZuPKkRI9PspppL0yXZm3zKoBLqrbFI3YBY9OKAPRw3i5rrcq6N9lMnGTMJPL3tjjGN2zZ/wLd2xQBx3xH8E%2BKPGUGmfbrbwtctZByYLlZmiZ5bYxuw%2BUn5ZGLL7AZweQAJdW/ijVLXT/AAtPo139n07UbDbqglKvJFBKTJKxYDaWEI%2B6XJEo9c0AeojgUALQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAYfhyztLbV/EM1tepcyXWoLLcRrjMD/Z4U2HnrtVW/4GKqTbSuJIu6hfT291HbwWyzM6M5LSbAACB6H1pJAQ/b9R/6B0P/AIE//Y0WQFfMv9oHURoll9tMXkm480eZ5ed2zdsztzzjpmjQCx9v1H/oHQ/%2BBP8A9jQFyO7vftOmxxy6fFcC7Z4JLeVgUIAYMDkEEHBGMc5osFytosFroix2eneHtO0u1klAZLPbGoY8Z2qoB7UAdFSGYXiE6WNc8Pi%2BEpuvtkn2Ep90SfZ5d2728vf%2BOKqN7Owna6N2pGFABQAUAFABQAUAFABQAh6UAZR1K8eSUQWMbokjIGafaTg4PG007CuL9v1H/oHQ/wDgT/8AY0WQB9v1H/oHQ/8AgT/9jRZAXdOuGurVZmj8ttzKy7s4KsQefwpDLFABQAUAFABQAUAFAFTVLp7SBGji813kCKpbaMn35ppAVft%2Bo/8AQOh/8Cf/ALGiyFcPt%2Bpf9A6H/wACf/saNAuH2/Uv%2BgdD/wCBP/2NFkFw%2B36j/wBA6H/wJ/8AsaNAuH2/Uv8AoHQ/%2BBP/ANjRYLl%2Byn%2B02cNxtK%2BbGr7Sc4yM4pDJqACgAoAKACgDE8OR6YmreIWsJ5JJ31BWvlYcRzfZ4QFXgceWIz35J%2BgqV7K4lYnv/wDkMQ/9e7/%2BhLS6A9x4FIQYoAO9AzOLiO0sZWSRlW6m3bI2fGTJ2AJqgJZbyO5ubdI4rjd56Hm3kUYBySSVwKLWA3akZheIbixh13w/FdWZnuJ7yRLSQH/UuLeVi34oHX/gVUk7Owm9UbtSMKACgAoAKACgAoAKACgBKAMex6XH/XzL/wChmqZJYqQAUAP0X/jxP/XaX/0Y1NjRepDCgAoAKACgAoAKAM7W/uWv/Xwv8jTQmBpCDtQAUAHagBKAJtF/5A9n/wBcE/8AQRTluyi5SAKACgAoAKAMPw4%2BmNq/iEafDLHOmoKt8znh5vs8JBXk8eWYx25B47mpXsriVixf/wDIYg/693/9CWl0B7j6QgzQMBQBUhkmSwtkhk8syXUqs20E4zIe/uBTAkllu4TE/wBrZwZo0KlFwQzhT0HvTVmFzXHSpGYfiG%2Bitdc0C1ksYrh7y8kijlfGbci3lfcvHUhSvbhj9DSV0xN6o3akZ5/8fvGFx4L%2BHVxf6feRWeqXlxDYWE0kYdYpZXC%2BYVIO4Iu98YP3elAEfwC8dHxr8ONPv9SvreXWYPNttR24QtLC5RpNnGFb5W6ADeKAO0OtaQNQuNPOp2Yu7YRGeAzKHjEhxHuGcjcQQPU9KAMD4veJpPCngK/1K2nSG%2Bk2Wtk7pvCzysERivcKW3keimgDkPAnxO1jXNL0LSrGystX1x4Lr%2B0557g2kQ%2ByypFI6gRsdz%2BYjquFADckcUAZsHxS8R6fplnrHiWxtwN2s4t9OuQyTi1nWJA/mRAqdxxlWAx8xHO1QDduPiV4li1VPDi%2BFdNfxD/aJsnjGrN9lA%2BxtdBxL5O77qlSuwHPqDmgDu/BWux%2BJ/COk%2BIYrd7dNRs4roRMcmPeobaSOuM4zQBr0AY1j0uP%2BvmX/wBDNUySzUgFAD9F/wCPE/8AXaX/ANGNTY0XqQzi9Y%2BJXhzSvihpXw8ujc/2rqcBmikVAYI%2BHKo7ZyGYRPtGDnbQB2eeM0Acj4d%2BIvhnWYNfuVu/sNtoN09veT3hWKMhePNVicGMkMAxxkqaAKlx8WPA/nX9tp%2BuWep3VlZR3rQ21xHmSJyQCrMwU4xk88ZGeooA3JfGXhOLUL/T5PEmkpeadE017AbtA9uigFmcZyoGRknpkUAXPD%2Bu6L4hsmvdC1Wy1O2WQxNLazLIgcdVypxkZH50ALrf3LX/AK%2BF/kaaEwNIQCgDwL4qa94/i%2BJutaNpV/4qs9ANnZlrjSdA%2B3fZy2/eyv5imNjgchX%2BgxyDPe0%2B4OSfc9aAHUCJdF/5A9n/ANcE/wDQRTluykXKQBQAUAFABQBieHLuyuNW8Qw2tkLeW21BYrmQH/XyfZ4WD/8AfLIv/AaqSdlcSJ7/AP5DEP8A17v/AOhLS6A9x/akI8o8NXs83xt1Kzll1xnt3kMccs7GFIGDEkpsChd%2BCp3McGMAjDCgZ6vQBUhhuJdPt2tkjd4rqViruVBGZB1APr6UwHNb6nM0SyW1rGglR2YXBYgKwbpsHp60KyCxn634um0/xTBoVv4e1K/LfZ2muYV/dQxyyGPcTjBKtgleu3c3RTSGaGu3t5bazodtb2yyw3l28VxIUJ8pRBI4YEdMsqjJ9cd6pJNMTeqNa4mjgheaZ1SNBuZmOAB61IzNaz0bxANN1O4sYrlrOX7RZPPF80Mm0ruAPKtgsPXk0AcR4u%2BDmga54i1HV7WRdIfVLCe1vzZxGOaZ5GU%2Bb5isMH5cEEEMDg%2B4Bh6v8DJtQ8RX%2Bqy%2BKopEupY5BHc6c08jeVLbvEssjTZlCi32ZwpIkck5NAHr99p1jfSWsl5axTvZzefbl1z5Um1l3j0OGYZ96AMjUvBPhLUrs3d94e064na5%2B1NI8ILGUqqlifUqiA%2Bu0Z6UAKvgvwmJbmT/AIR7Ti1y07T5hBEhmAE2QePnwN3rQA/SPCHhjSY7aPTdDsbUWs73EPlxAFJGQxs%2Beu4oSufTigDU0uws9L06307T7aO1tLaMRQwxjCogGAAPQCgCxQBj2PS4/wCvmX/0M1TEeKw/tArez27aV4UkvLW2aJdel%2B2hG0xpbr7PHFtKfvJT94oMYHGTUhY9y7UCH6L/AMeJ/wCu0v8A6MamxofLqFrHqEViz/v5QSqgE8AE8%2BnQ4z1wfSkM8h8W/BO%2B1vxJq3i5PF1zb6/LrFpqGmkR5tbdLYKsUbx5y52%2BaCQw/wBYePUA7jwJc%2BLNY%2BF1vJrTix8TTWkiSPJZNCIZ/mUExk5IBweDhuo4IoA4r/hR7afBbx6J4muB5dnaRyLqCG4SWa0uUuIGIBHyZEwZc8%2BbnPFAGprPw417Vn1mS51nSI31rSIbG7EFg6COSKeWRGj/AHh%2BUiYgg5JK5yM4ABn6z8HtR1O1v9Nl16xXT2Oqy2RFi32gSX2/cJn34dU8xsAAZwufu8gHoPhXw2ND1nxDfJNEYtWu4rhIkj2iIJbRQ498%2BVnt1oA0Nb%2B5a/8AXwv8jTQmB60hCUAeLXfxrtNS0TVLC0TVtG12G/uLOGePQbnUbdDFcNGHyiBW3KnIB%2BUt3xQOx67on9pDSbYawbVr/wAsfaDahhEW7lQ3IB64PTpk9aALuaBEui/8gey/64J/6CKct2UXKQBQAUAFABQBieHb8XmreIIBZx2/2LUFgLoOZ828L7246/Pt78KKqSskJPcnv/8AkMQ/9e7/APoS0ugPcfSEeS%2BG7dG%2BNV5cKluXhmniZjqKySLvDuFVAcqh6lTzuz/DGuQZ61QBSgnuY7a2ht5Ej8yacszJu6O3vTAmFxfxXNsJLmKRJJdjDysHGCeufagDyXxNr2m3/wAdLKLTrrTWuIvs9rMHv/s8qSpdnKvGZVL/ACCXYqo%2BS4J4IpDPV/EN1qNrqWjm2wLFrmT%2B0XIGEiEEhBJPT94E5HrVJKzuJ30G5l1GZbi4Vkt0OYYWGCT1DuPX0Hbqeei2AdYpf2dsLeKe2ZFLbS0LZwST/e96NAuT%2Bdqf/Pa0/wC/Lf8AxVGgXDztT/57Wn/flv8A4qjQLh52pf8APa0/78t/8VRoFw87Uv8Antaf9%2BW/%2BKo0C4edqX/Pa0/78t/8VRoFxPP1P/ntaf8Aflv/AIqjQLi%2Bdqf/AD2tP%2B/Lf/FUaBcPO1PH%2ButP%2B/Lf/FUaBcpaBM9xZSSyBQ5uZg23pkSMP6U5CPm2xk1N/iY0M03xobQWkhmjMujja94J23Fz5WPKCiMhuvXnipKPqKgkpQXzRWn2S1Ae6eWU4P3Y181vmb264Hcj6kOw0ILCSJoJYJl86OUyvJKu4ysUKknBHr9BjFFwLfnan/z2tP8Avy3/AMVRoFw87U/%2Be1p/35b/AOKo0C4efqX/AD2tP%2B/Lf/FUaBcPO1L/AJ7Wn/flv/iqNAuHnan/AM9bT/vy3/xVGgXDztS/57Wn/flv/iqNAuUtUmvt9mJpLdkNyoISMg9D33GmrCuaGakAPSgD4%2B1Dxzqtp8R9Q8NeEvilN4a0e11a4N7JqmnWyRiRpmaRIIkiLyfMT87lc5oKPsBTx60Ei9qAJdF/5A9l/wBcE/8AQRTluyi5SAKACgAoAKAMfQbzULrU9chvbfyobW%2BENo3llfNiMETlsn73zu4yOOMdjVSSSVhIkvv%2BQxB/17v/AOhLS6A9x9IR5P4aSz/4XRetHawrciW533IuJzDKBghIoz%2B7Eyl23leeX/vGgZ6xQBShguXtrWa3iWXy5Zwyl9vV2pgTCC%2BmubYvarEkcu9m80HjBHT8aeiCx5v4h0i70D4pWl3o97q8qaneW5ntDc3BjwZmMhU%2BWYwqh3cqXHAOABipGegeK7LVby/0X%2Bz5FW3hvGkvAxG1kEMmzIPX94YzxyMZ7VUWrO4nctW83mblZTHKhw6Hqv8AiD2NSBE2o6eGKm/tQynBBmXg%2BnWnYBP7S07/AKCFp/3/AF/xosxC/wBpad/0ELT/AL/L/jRZgH9pad/0ELP/AL/L/jRZjD%2B0tO/6CFp/3%2BX/ABosxB/aWnf9BC0/7/r/AI0WYB/aWnf9BC0/7/L/AI0WYB/aWnf9BC0/7/r/AI0WYw/tLTv%2Bghaf9/1/xosxFTwqytpbMpDKbqcgg5BHmtinLcEfH%2Bl/8Iinxbt4fBt3F4j046nm6n8R6o1kYH8zkQOJ0aXDdAYWz0yako%2B1e1BJmadF9himnIzBPcys790bzGHzHuvAGe306U9Rl6e4gt1DXE0UKk4BkcKCfTmpsIh/tLTv%2Bghaf9/l/wAadmMX%2B0tO/wCghaf9/wBf8aLMQHUtO/6CFp/3/X/GizAP7S07/oIWn/f5f8aLMBP7S07/AKCFp/3/AF/xoswD%2B0tO/wCghaf9/wBf8aLMCpqN7ZzS2UcN3byubpcKkoJ6HsDTSYM1qkBD0zQB8qeLfEHjXSZL7TZvH3ha2sb%2BbU9Ps7i41y5SXe14H3jEZAkhBEQAOACRmgo%2BqkGAATmgkdQBLon/ACB7P/rgn/oIpy3ZRcpAFABQAUAFAGPoL6q%2Bqa4uoqRbpfKtgSoGYfIiJ6df3hk68/hiqlaysJXJL/8A5DEP/Xu//oS0dAe45jgZqRHk/wAKrrTNe8Zanrls1uS00k9uk0sizCKZVZZFhEjRDcBy4VXOMMM5yDZ6zQBSgnuY7a1ht3jTzJZ9zOhbo7dORTAnFxfx3Vssk8EiSS7GAhKnGCeDuPpRZAcfcfCbTZvHL%2BLDrN6Lh7xLpovs9ueVljkC%2BYY/MxmNR97IXK5waQzrtcsby61jRLm3uBFDZXTy3KFyPNQwSIFAHBwzqcH09apNJMTWqLt/Z%2BdtlhYR3CD5WxwR3U%2BoNSMj0G2lt9LiiuYlSUZLKDnBLE9e/WmwL2xP7q/lSANif3V/KgA2J/dX8qADYn91fyoANif3V/KgA2J/dX8qADYn91fyoANif3V/KgDHsek4H/PzL/6GabJPmDUrnxlJ8StJt/G%2BiR%2BCtGk1RkeXStAhkjdVy0LG9xIcu4RSNqY3GkM%2BqKAH6OA1gwIBBmm4P/XRqbBFRtNmi1Kz8kB7SKRnwx5j%2BRlwPUZP4fToXA19i/3V/KkMNif3V/KgA2J/dX8qADYn91fyoANif3V/KgA2J/dX8qAM/W1ULa4UD/SF7expoTFpCEoA%2BQ/iAumQeIbvwXonia08Q2V7qNzb/ZNN0d7nU7UXE/n3Fmk28QDc6MdzfOoB9KCj67jAVFUDAAwB6UCHUCJdF/5A9n/1wT/0EU5bsouUgCgAoAKACgDH0CDVItU119QkZ7eW%2BV7EF922HyIgQB2/eCQ49896p2srCVyS/wD%2BQxB/1wf/ANCWl0B7jjSEULHRdGsbj7RZaRp9rNgjzIbZEbB68gZoGaHSgClBBcyW9rNbJG/lyz7ld9vV29jTAnFvfyXVs0kEEaRy72ImLHGCOBtHrRsFjXpDMPxBp6Xet6DdNexwNZ3kkqxN1nJt5U2jnqAxbvwpqk7Jia1RuVIwoAKACgAoAKACgAoAKAEoAx7H/l4/6%2BZf/QzTZJOQDwRxSAWgB%2Bi/8eJ/67S/%2BjGpsaL1IYUAFABQAUAFABQBna39y1/6%2BF/kaaEwpCCgDzXXvgv4RvtaGu6O%2Bo%2BG9XW7%2B2i50u5KK0/OZGhbdEWIZgTtyQx5oGekgHHqaBC0AS6J/wAgez/64J/6CKct2UXKQBQAUAFABQBjeH7G6tNV12e4uVmjvL5Z4EDk%2BUgghTaQenzIzYHHzZ7mqk00hJEt/wD8hiH/AK93/wDQlo6A9x9SIKACgZXtbt7WwgWOHzXlnlUAttAwznOfwp2AmXULhZYlms1RHcJuWXOCenGKLBc06QzC8QW1hNrnh%2Ba6vDBcW95I9pHj/XubeVSv4Izt/wABqot2dhNao3akYUAFABQAUAFABQAUAFACUAY9h/y8f9fEv/oZpsRYNIQUAP0X/jyP/XaX/wBGNTY0XqQwoAKACgAoAKACgDO1v7lr/wBfC/yNNCYUhBQAUAHNABQBLov/ACB7P/rgn/oIpy3ZRcpAFABQAUAFAGH4csYLPV/EM8V7FcPeags8saYzAwt4U2Nz1wgbtwwqpO6QkWNR3LqkMhjkKeS6kpGzYO5fQH0pLYGJ5y/3Lj/wHk/%2BJosIPOX%2B5cf%2BA8n/AMTRYA89P7lx/wCA8n/xNFgKwSRbaxcwzYW4lZgI2JAO/BIAyOopjJZSZZbdUinJEyE5hcAAHJ5IxSsBs0hmF4hXSzrnh83zyi6F5J9hCdGk%2Bzy7t3t5e/8AHFVG9nYTtdG7UjCgAoAKACgAoAKACgAoAQ0AYtsxhadZIpwTPIwxC5BBYkHIGKrcRN5y/wDPO4/8B5P8KVhB56/887j/AMB5P/iaLAWNHVlsfmVlJlkYBlIOC7EcH2NDKRdpAFABQAUAFABQAUAZ%2Btqxit2VHYJOrNtUsQMHnA5poTIvOX/nncf%2BA8n%2BFFgE85f%2Bedx/4Dyf/E0WAhfUrJL2OxeSRbqWNpI4TC%2B9kUqGYDGSAWXJ/wBoUWET%2Bcv/ADzuP/AeT/4miwCecv8AzzuP/AeT/wCJosBc0hGj0q0R1KssKAgjBB2ih7lFqkAUAFABQAUAYfhyDTodX8QvZXTzTTagr3iMOIpfs8KhRx02CNu/3jVSbaVxKxt8eoqRhx6igA4oAOPUUAHHtQAce1ABkUAYXiGfTY9d8Px3lq81zLeSLZSKcCGQW8pZjyMgoHXvyR9RSTs7Cdro3qkYUAFABQAUAFABQAUAFABQAmBQAUAGKACgBaACgAoAKACgAoAKAEoAKACgDwjxroOoT/theDNTTxDdwx/2LdypbLGvlrHGyK8Z9d/mEk9QVXHSgD3fFABQAtABQAUAFABQAUAYN14bR49UFjqmoabNqV0t1NcWzJ5issaR4XerAArGvY96rn2v0FYbdeHrybRLbTl8U63BLA5Zr2NofPm68OTGVxz2UdBTUle9gtpuGq%2BHby%2BsrK2i8Ua3YtbJsea3aHzLg4A3SboyM8Z%2BUDqaSkk9gav1H6voN3f3ltcReJNY09YFAaG1aIJNg5y%2B6Njk9OCKFKy2Bq/U4u5vNbuf2j/%2BEeXxBf2%2BkQ%2BG49U%2BxxCPY8v2kxEMShbaVHIBHPehSsrWCx2sWhXaeITqx8R6u8JJP9ns0X2YfLjp5e/3%2B919uKObS1gtrcNM0K6s9YuNQk8RateRzbttpO0XkxbjkbdsYbjoMseOuaHK6tYEtRmj%2BH7vTxdiXxPrWofaIyi/amhPkHn5k2xrzz3z0FDkn0BLzF0Pw4LAq9/qt/rcsUvm28uoeUzwNtKHYURcZVmH4miUr7KwJWN6pGFABQAUAFACUAFAC0AFACUAFAC0AFACUALQAUAFABQAUAFABQAUAFABQB5P4p/5Ol8F/wDYuan/AOjIKAPWKACgAoAKACgAoAKACgAoAKACgBKAPLIWU/tYXPP/ADI8Y/8AJ5qAPVKACgAoAKACgAoAKACgBGOFJFAHzzonxL8d3Ft4Y8a3GqaVJouv%2BKG0YaGtniW3iMskauJt2WkXy9zAjGD2oAfJ8eL82ekeK73w5e6bpF1pWo38VkLmGU3aQeSFcttzH8zsAPTkjoKAGyfH2%2BVx4gn0C4g0yDTNQuFs4rlJEvhbzW8YlSVo1YAmVgOMHHPsAaur/H19K0XULm/8IG21PTr%2Ba0udPk1NC58u3SfdGURt%2BUkHAGF7sBzQBf8ABPjfxV4m8P8AxG1LRBHeXlpODoFrcqqKu%2BwgmjjYjGfnkPU9%2BoFAHMeD/i74xfUvDGkTQx6pe3mq3Njrcd9ajT57BorZZWj2gspx8zh%2BjLgcHmgB037Qusao1vbeG/ClpJd/2tpts%2B/UN8U0N28irsfYo3Exldw3KM5BYUAdn8OvjAnjTxrdeH7bwxqVvaRtdJHqJDNEzW8gjZW%2BQKu45K4ZshTnB4oA4TU/jXr%2BgTT6NqzRTaroGr6jLrfk243SaZbxiWJlXopl863QN67jQB02j/HHUNWksNNsfh/qJ1q%2BuJ44bWa58iKSKKFJXlWWWNd3DhcbR8wPOOaAINB%2BMniiVrqyv/B0Fxqlx4nutF0q3gv1jVxAju/mOwIUoqfeA%2BYtwBigDZ%2BHPxgl8c%2BJLDTNJ8KXMdrNpceo3l5LeIBaB3mjCbMZc74SMg4wc8dwDmfG3x/u7AeLtN0TQLWXUNH0%2B8u7W5N75sEn2eVY5N4CgAjfu2qxPG0lTQB1njXx54v0aP4fm08OWT3HiHUVtb63e8/1WYXk2o%2BMZ%2BUndjHy4xzkAHqA6UALQAUAFABQB5P4p/5Ol8F/9i5qf/oyCgD1igAoAKACgAoAKACgAoAKACgAoAQ0AeEeO/hf4l0/49Q/FTwPoukatcS2BhuLbUL97dIp%2BFEy7VbcSnGOMHJ6mgDoP7c%2BP3/QheC//B7L/wDGqAD%2B3Pj9/wBCF4L/APB7L/8AGqAD%2B3Pj9/0IXgv/AMHsv/xqgA/tz4/f9CF4L/8AB7L/APGqAD%2B3Pj9/0IXgv/wey/8AxqgA/tz4/f8AQheC/wDwey//ABqgA/tz4/f9CF4L/wDB7L/8aoAP7c%2BP3/QheC//AAey/wDxqgBDrnx%2BIx/wgXgv/wAHsv8A8aoA5DT/AAb8QbDxU/imz%2BDfw8h1dpHl%2B0Lrc3yyOMO6r5e1WPOWABOT60AZ/i/4f/E/X/BieGofhv4L0yK3spLKxnt9emL2sUjq7qoaMghii5znj0oAo%2BEPhf8AFDR9EuNO1X4f%2BD9ea4M6vJc67MipFMYy8MaJGAkeYkOB3BOeaANvXPBXxA1yWeXVfg74AupJ7lrqVm1%2B4BeRo1iYkhBwURVI6EKMigC9a6B8UrXRdT0aD4T%2BAk0/VAovYP7enKzARrEM5j7IiDjHQd6AM%2BDwL48g0yz06L4M/D1bazvTfwL/AG9OWFwRgyFvL3MSMA7iQQAOgoArQfDfxnBpl3psPwW%2BH6Wt35PnIPENzz5TFosHZldpY4wRgHHTigDY0Hw98UNB8Q3Ov6P8KPAllqN1v86WLX7gBi5BY7PL2gkgEkAE0APutC%2BKN1rmqa3c/CT4fTahq1n9h1CZ9alY3EGAPLYGLBGAO3YelAGO/wAPPG8mjxaRJ8GfAMlnDcG5jR/EVyxSQqEJDFNwBUAFc4IA4oAl1HwJ481BdQW8%2BDXw/kGoXS3lzjX7hS06ggSAiMbGwzAlcZyc5oA2dA0z4taBdfadF%2BFfgKwl%2BxxWOYdcmUCCIsY0x5WMAux9eTmgDHj8DePY7/Ur5fg18PRPqcM8N439vXBEsc5DSrt8vADEZOAOeaAL194d%2BKF94e0zw/d/CjwLNpulSpLYwt4guP3DoCFZW8vdkAkdecnNAHT/ANufH7/oQvBf/g9l/wDjVAB/bnx%2B/wChC8F/%2BD2X/wCNUAH9ufH7/oQvBf8A4PZf/jVAB/bnx%2B/6ELwX/wCD2X/41QBX1LXv2gl065aLwL4PSQRMVaPWpHcHBwVUxYJ9B3oAyvhLoXxZ17xl4c8d/ErTtI0u403SrqyMMEp8%2BfzjGwd4wCqEbDkBu/QUAe60AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAJQAUALQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAAD/2Q=='/%3E%0A%3Cg clip-path='url(%23c0)'%3E%0A%3Cpath d='M56.5 58.2c2.6 0 4.6-2 4.6-4.6c0-2.5-2-4.6-4.6-4.6c-2.5 0-4.6 2.1-4.6 4.6c0 2.6 2.1 4.6 4.6 4.6Z' class='g1'/%3E%0A%3C/g%3E%0A%3Cimage clip-path='url(%23c2)' preserveAspectRatio='none' x='730' y='421' width='13' height='14' href='data:image/jpeg%3Bbase64%2C/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIAA4ADQMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5%2BgEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4%2BTl5ufo6ery8/T19vf4%2Bfr/2gAMAwEAAhEDEQA/APcdf%2BImtzraLpFvZ2EzXRinjmbzpoUwf9ZEQhRuOmSD2JxXLj51KHKoPc9/IcDhcX7V4hP3VdWdtfuZhv8AETxil9HE1/Z%2BRJG5DrpZMiupXKsnmccOpyCRyPfHm/Xa6e/4H0y4fy103JQd019vSzvZp8vk1ayO38UfDLT9Wkt57PUbqyuYZA3nTM92SoB2oPNY4UbmOBxya9TF0HiFFXtbyPk8nzb%2BzXP3OZSVt2vyMJvgxumSRvEqsI0MaRtpUJjQE5OEPyg574zXD/Zevx/gj3lxjaLSobu7fPK/37/K9gD/2Q=='/%3E%0A%3C/svg%3E)
Memory
10 | January/February 2024 Semiconductor Digest www.semiconductordigest.com
And a concurrent action of the
Agent would be to regulate WIP
flow into a tool or at WIP flow
branching. A ={A
1
,A
2
……A
i
},
where A
i
={a
1
,a
2
……a
i
}. The
Agent function would strive to
achieve WIP in wait distributions
at tools that do not exceed WIP
content double the size of ideal
WIP [3]. π
t =
P (A
t
= a ןS
t
= s). In
other words, the Agent policy
will tend to converge towards an
even, minimum WIP content in
the tool buffers. Even as it starts
out from an unbalanced system state.
Timing
Encoding neural networks with the
actual nodes of a semiconductor dispatch
system, and its representation of system
states, has demonstrated successful
Agent Learning and Agent action for
the Semiconductor environment. These
demonstrations generally assume a
practically instantaneous delivery of
Actions. However, to implement those
actions in the real fab’s physical envi-
ronment involves timing for the Actions.
As a consequence, considering today’s
well accepted Discrete vehicle AMHS,
the above policy statement cannot be
instantaneously executed. In other words,
A
t
= a ןS
t
= s cannot happen.
For the assessment of system states,
followed by an intelligent agent’s calcu-
lations, and release of its control actions,
a time period is required. Ideally, for the
control action to be effective, its release
should be made before the state of the
system has changed on its own. A com-
putationally intensive process (dependent
on the complexity of the controlled state)
Yet, it is likely that the states of the
system in typical IC manufacturing
will rapidly and unpredictably change,
and in a stochastic fashion, considering
a functional set of processes, or the
whole. 50% of the changes occur in
less than 5 minutes, while 80% of the
changes occur in less than 15 minutes
[1]. This considered, an iteration of the
Reinforced learning cycle should be
as short as possible. Today’s computer
systems, collecting state matrix vectors
from the system and solving algorithms
of reinforced learning (ex. neural net-
works), followed by a matrix of actions,
may take tens of seconds to a minute.
In general, appraising the parameters of
semiconductor manufacturing process
states and the issued actions to modify
them may be computer fast. If, however,
such machine learning is applied to
wafer lot dispatching in semiconductor
fabrication, then consideration must be
made to the so-called wafer lot “moving
agents”, i.e. the AMHS, in segments or
as a whole, having compatible exe-
cution capabilities. This, however, is
not the case. Average delivery times of
current AMHS designs (discrete vehicle
transport) are in the several minutes,
up to 15 minutes range, and are them-
selves stochastically distributed. This,
in general, frustrates the actions issued
by the agent to various degrees, and is
likely to result in the reduction or elimi-
nation of rewards (FIGURE 2). Overall,
the scatter of system states approaching
the desired goal is adversely affected.
An example instance of such a coun-
terproductive Action maybe where the
system state routinely changes in less
than five minutes, while the Action
corresponding to the original state of
the system arrives with a delay of 10
minutes.
The AMHS is the essential tool in
delivering an Action from the
Agent. Current use AMHS
technology (discrete vehicle
transport) depends on excess
WIP accumulation in order for
it to assure WIP availability at
tool inputs. But, to improve the
chances of success for Rein-
forcement Learning Dispatch,
the AMHS should be able to
deliver WIP without delay. Thus,
conveyor-based AMHS should
be considered. Because of the
all-time availability of conveyor
transport at the output of a process, the
WIP can directly move, without waiting
times, to the next process, and thus
become the buffer for it.
About the author
Mr. Horn has worked for many years
towards understanding the roles AMHS
can play in the manufacturing process
(Cf. publications IEEE Transactions)
and has pointed out ways to improve
AMHS roles. Currently he is the pres-
ident of Middlesex General Industries,
Inc. A manufacturer of conveyor
AMHS solutions. He can be reached at
gwhorn@midsx.com
REFERENCES
1. Operations Management in Automated
Semiconductor Manufacturing with
Integrated Targeting, Near Real Time
Scheduling and Dispatching. Nirmal
Govind et All, IEEE Transactions on
Semiconductor Manufacturing, Vol. 21, No
3.
2. Autonomous Order Dispatching in
the Semiconductor Industry Using
Reinforcement Learning. Andreas Kuhnle
et All, Elsevier B.V. 2019.
3. Towards Lean Front End IC Manufacturing
(with AMHS Implants), George W Horn,
IEEE Transactions on Semiconductor
Manufacturing, 2022.
4. Deep Reinforcement Learning for
Semiconductor Production Scheduling,
Bernt Washneck, et All, GSaME,
Universität Stuttgart, (Grant SemI40) and
support by Infineon Technologies.
5. Learning to Dispatch for Job Shop
Scheduling via Deep Reinforcement
Learning, Cong Zhang et All, Singapore
Institute of Manufacturing Technology,
A*STAR. 34th Conference on Neural
Information Processing (2020).
Figure 2. The action of an Agent is based on the
original state of the environment while the arrival of
that action is delayed randomizing its benefit due to
the altered state of the environment at the time of the
action’s arrival.